# Enhanced Detection of Rare Earth Elements Using Inductively Coupled Plasma Atomic **Emission Spectrometry with Ultrasonic Nebulization**

# Fred G. Smith, Teledyne CETAC Technologies, 14306 Industrial Road, Omaha, NE 68144-3334 USA fsmith@cetac.com

Abstract: The rare earth elements (the 15 lanthanides plus yttrium and scandium) are critical components of modern alloys, batteries, catalysts, ceramics, glasses, magnets, and phosphors. Specific applications of rare earth elements (REEs) include use in hybrid cars, wind turbines, and computer hard disk drives. Characterization of ore samples for REE levels is thus a very important analytical task, and inductively coupled plasma atomic emission spectrometry (ICP-AES) with conventional pneumatic nebulization can be used to detect trace levels (microgram/L) of REEs in solution. This poster will examine REE detection limits that can be achieved using ICP-AES with a more efficient ultrasonic nebulizer (USN). Figures of merit in a dilute nitric acid matrix will include instrument detection limits (IDLs) and LOQs (limits of quantitation). In addition, a commercial grade cerium oxide matrix will be analyzed with the ultrasonic nebulizer / ICP-AES combination to measure elemental impurities and IDLs of various rare earths.



## Cerium (IV) Oxide Sample Preparation

#### Cerium (IV) Oxide:

2.01 g of the cerium (IV) oxide sample was added to a precleaned 500-mL PF bottle. The following reagents were added in order to the PFA bottle: 10mL deionized water, 10-mL of high-purity grade nitric acid, and 10-mL of highpurity grade hydrogen peroxide.<sup>1</sup>

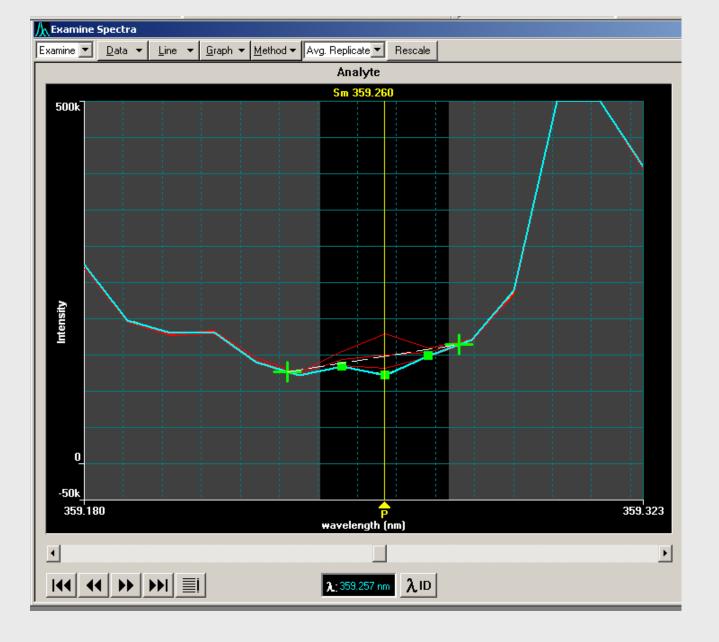
The PFA bottle with sample and reagents was placed on a hot plate set to lo heat for 30 minutes. The cerium (IV) oxide dissolved to provide a clear solution.

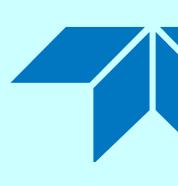
The resulting solution was diluted to 200mL with deionized water to yield a 1% (w/v) sample of cerium(IV) oxide.

1. L. Zhaofen, M. Chasseau, Horiba Scientific, ICP Application Note #61.

| Signal Intensities in 1% HNO <sub>3</sub> |                  |             | IDL and LOQ Comparison in 1% HNO |                 |                             |                              |         |
|-------------------------------------------|------------------|-------------|----------------------------------|-----------------|-----------------------------|------------------------------|---------|
| lement (λ,nm)                             | Std. Neb, 100ppb | USN, 100ppb | Factor                           | Element (λ, nm) | IDL (Std. Neb,<br>USN) μg/L | LOQ (Std. Neb.,<br>USN) μg/L | IDL Fac |
| Ce (413.764)                              | 6016             | 58323       | 9.7                              | Ce (413.764)    | 2.3, 0.13                   | 7.6, 0.43                    | 18      |
| Dy (353.170)                              | 42026            | 670597      | 15.9                             | Dy (353.170)    | 0.33, 0.01                  | 1.1, 0.033                   | 33      |
| Er (337.271)                              | 39065            | 607012      | 15.5                             | Er (337.271)    | 0.26, 0.01                  | 0.86, 0.03                   | 26      |
| Eu (381.967)                              | 118301           | 1659431     | 14.0                             |                 | •                           |                              |         |
| Gd (342.247)                              | 26711            | 338351      | 12.6                             | Eu (381.967)    | 0.05, 0.002                 | 0.16, 0.007                  | 25      |
| Ho (345.600)                              | 36777            | 535874      | 14.5                             | Gd (342.247)    | 0.32, 0.02                  | 1.05, 0.07                   | 16      |
| La (408.672)                              | 47305            | 615216      | 13.0                             | Ho (345.600)    | 0.16, 0.008                 | 0.53, 0.026                  | 20      |
| Lu (261.542)                              | 114143           | 1329123     | 11.6                             | La (408.672)    | 0.35, 0.006                 | 1.15, 0.02                   | 58      |
| Nd (406.109)                              | 13498            | 182508      | 13.5                             | Lu (261.542)    | 0.03, 0.003                 | 0.1, 0.01                    | 10      |
| Pr (414.311)                              | 11128            | 147702      | 13.2                             | Nd (406.109)    | 0.7, 0.02                   | 2.3, 0.07                    | 35      |
| Sc (361.383)                              | 240095           | 2924656     | 12.1                             | Pr (414.311)    | 0.96, 0.02                  | 3.1, 0.07                    | 48      |
| Sm (442.434)                              | 21893            | 333936      | 15.2                             | Sc (361.383)    | 0.04, 0.002                 | 0.13, 0.007                  | 20      |
| Tb (350.917)                              | 12138            | 169452      | 13.9                             | Sm (442.434)    | 1.1, 0.03                   | 3.6, 0.1                     | 36      |
| Th (283.730)                              | 3989             | 42572       | 10.6                             | Tb (350.917)    | 0.46, 0.03                  | 1.5, 0.1                     | 15      |
| Tm (313.126)                              | 41218            | 591126      | 14.3                             | Th (283.730)    | 1.5, 0.04                   | 4.9, 0.13                    | 37      |
| U (424.167)                               | 11520            | 179316      | 15.5                             | Tm (313.126)    | 0.35, 0.01                  | 1.1, 0.03                    | 35      |
| X Z                                       | 201385           | 2491265     | 12.3                             | U (424.167)     | 1.5, 0.04                   | 4.9, 0.13                    | 37      |
| Y (371.029)                               |                  |             |                                  | Y (371.029)     | 0.04, 0.002                 | 0.13, 0.007                  | 20      |
| Yb (328.937)                              | 258423           | 3436205     | 13.2                             | Yb (328.937)    | 0.02, 0.0008                | 0.07, 0.003                  | 25      |

## **ICP-AES Calibration with Std. Neb. & USN**


|    | А<br>0 |  |
|----|--------|--|
|    |        |  |
| יכ | W      |  |


#### **Standards:** 1. One set of calibration standards containing 20, 50, 100, and 200 $\mu$ g/L Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U, Y, Yb, was used to calibrate the ICP-AES with the standard pneumatic nebulizer and the ultrasonic nebulizer (USN). The reagent blank and all standard were

prepared in 1% high-purity nitric acid using pre-cleaned 125-mL low-

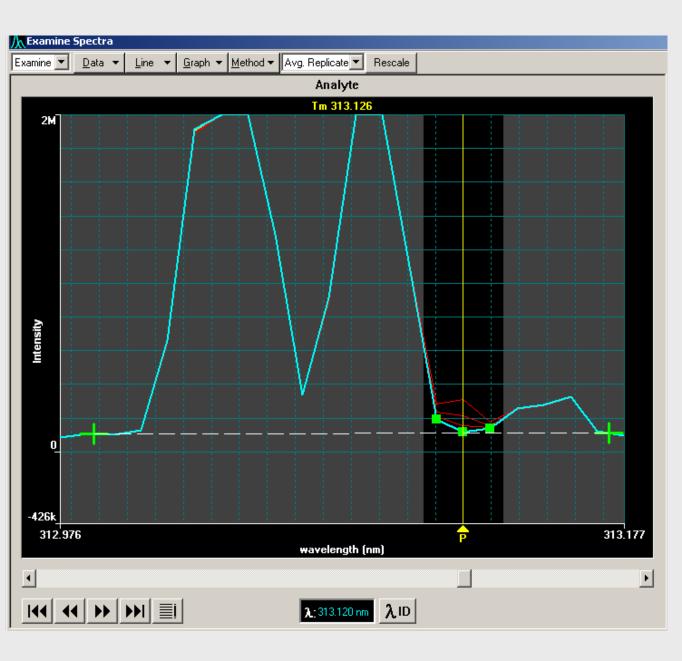
- density polyethylene (LDPE) bottles. 2. Following calibration the reagent blank was introduced with both nebulizers to determine the instrument detection limit (IDL) and limit of quantitation (LOQ); the former is defined as 3x the standard deviation of the blank concentration, the latter as 10x the standard deviation of the blank concentration.
- 3. An additional calibration in a 0.1% CeO<sub>2</sub> matrix was performed for Ho, Lu, Sm, Tm, Yb, Ba, Ca, Fe, Mg, Si, and Zn; complex background emission was less pronounced for these elements.

#### Sm (359.260nm) in 0.1% CeO<sub>2</sub>, ICP-AES & USN





#### **ICP-AES** Operating Conditions – Std. Neb.


| ICP Power:             | 1300 W                         |
|------------------------|--------------------------------|
| Plasma Gas:            | 15 L/min                       |
| Auxiliary Gas:         | 0.2 L/min                      |
| Nebulizer Gas:         | 0.60 L/min                     |
| <b>Resolution:</b>     | Normal                         |
| Viewing:               | Simultaneous, Axial            |
| <b>Torch Injector:</b> | Alumina, 2 mm diam.            |
| <b>Torch Position</b>  | :-2                            |
| Points/peak:           | 3                              |
| Integration Tim        | ne: 20 sec min, 20 sec max     |
| <b>Replicates:</b>     | 3                              |
| Pneumatic Net          | oulizer (PN): Glass Concentric |
| Spray Chambe           | r: Glass Cyclonic              |
| Sample Uptake          | e Rate: 1.5 mL/min (pumped)    |
|                        |                                |

### **ICP-AES** Operating Conditions - USN

U5000AT<sup>+</sup> USN operating conditions are the same as the standard nebulizer except for the parameters listed below. The USN was connected to the host ICP-AES using Teledyne CETAC interface kit SP8140. Setup time is approximately 5 minutes, including removal of the standard nebulizer/spray chamber. The ICP torch and injector were not changed.

> Nebulizer Gas: 0.55 L/min **Torch Position:** -4 USN Interface Kit: SP8140, 5 min setup Sample Uptake Rate: 2.0 mL/min (pumped) Heater Temperature: 140°C Condenser Temperature: 3°C





| Element (λ,<br>nm)                                 | Std. Neb. IDL<br>(μg/L) | USN IDL (µg/L) | Factor |  |  |
|----------------------------------------------------|-------------------------|----------------|--------|--|--|
| Ho (345.600)                                       | 1.49                    | 0.24           | 6.2    |  |  |
| Lu (261.542)                                       | 0.07                    | 0.15           | 0.46   |  |  |
| Sm (359.260)                                       | 0.96                    | 0.18           | 5.3    |  |  |
| Tm (313.126)                                       | 0.87                    | 0.94           | 0.92   |  |  |
| Yb (289.138)                                       | 0.94                    | 0.13           | 7.2    |  |  |
| Ba (233.527)                                       | 0.37                    | 0.38           | 0.97   |  |  |
| Ca (317.933)                                       | 0.31                    | 0.09           | 3.4    |  |  |
| Fe (259.939)                                       | 0.25                    | 0.53           | 0.47   |  |  |
| Mg (285.213)                                       | 0.25                    | 0.30           | 0.83   |  |  |
| Si (251.611)                                       | 0.28                    | 0.18           | 1.5    |  |  |
| Zn (213.857)                                       | 0.43                    | 0.13           | 3.3    |  |  |
| Complex background from CeO matrix: need for highe |                         |                |        |  |  |

**ICP-AES**)

# **TELEDYNE** CETAC TECHNOLOGIES

. ICP-AES: PerkinElmer Optima 5300DV ICP-AES

2. Ultrasonic Nebulizer: Teledyne CETAC U5000AT<sup>+</sup>

1. Nitric Acid, Optima grade, Fisher Scientific, Fairlawn, NJ, USA

2. Hydrogen Peroxide, TraceSelectGrade, >30%, Fluka Analytical, Sigma Aldrich Chemie, Steinheim, Germany

3. Various single element standards, Inorganic Ventures,

1. Cerium (IV) Oxide, 99.9%, GFS Chemicals, Powell, OH, USA

#### IDLs in 0.1% CeO<sub>2</sub> with Std. Neb & USN

 $\succ$  Complex background from CeO<sub>2</sub> matrix; need for higher resolution and/or additional emission lines (ex. sequential