

# Analysis of Epichlorohydrin in Drinking Water Using the Tekmar Lumin P&T and the Agilent 8890 GC and 5977C MS

Amy Nutter, Technical Product Specialist; Teledyne LABS

water testing, GC/MS, Agilent GCMS, Tekmar AQUATek LVA, Tekmar Lumin Purge and Trap, Epichlorohydrin

### **Abstract**

Epichlorohydrin (ECH) is a versatile starting material in the production of drugs and polymers and is also used as an insect fumigant and solvent for organic synthesis reactions. ECH-based polymer pipes are widely employed in the production of drinking water. Due to its extreme reactivity and toxicity, many nations have begun imposing limits on the amount of ECH allowable in drinking water, including the new European Union Directive 2020/2184 requiring a limit of 100 parts per trillion (ppt). Many European countries go beyond this, recommending compliance at 1/3 this limit, indicating a 30 ppt minimum detection limit (MDL).

In the United States, drinking water analysis of Volatile Organic Compounds (VOCs) is performed by Purge and Trap (P&T) concentration, using standard United States Environmental Protection Agency (EPA) methods. In Europe, most drinking water detection limits are achieved with static headspace, but in order to reach the desired 30 ppt MDL, P&T will be used in this application. Variations EPA drinking water methods, with modifications to the matrix and method parameters, will be made to prepare the drinking water samples by the Teledyne LABS Tekmar Lumin P&T concentrator combined with the AQUATek LVA autosampler with analysis performed by an Agilent 8890 Gas Chromatograph (GC) and 5977C Mass Spectrometer (MS) (GC/MS). Calibration data, MDL, mid-point calibration check, and accuracy and precision of n=40, 30 ppt ECH samples will also be presented.

# Introduction

The Tekmar Lumin P&T has an innovative Moisture Control System (MCS) that improves water vapor removal, thereby reducing peak interference and increasing GC column lifespan. The AQUATek LVA autosampler has an 84-position chiller enabled sample tray and utilizes a fixed volume loop that transfers the liquid sample, internal standards, and surrogate standards to the Lumin P&T concentrator. It initiates a clean-up cycle where the sample loop and sparger are cleaned with 90 °C water, assuring method carryover compliance is met. In addition to other refinements, the AQUATek LVA incorporates a precision-machined valve manifold block to reduce potential leak sources and ensure the system is both reliable and robust.

## **Sample Preparation**

Two working calibration standards were prepared in methanol at the concentrations of 100 parts per billion (ppb) and 500 ppb from a commercially available ECH standard.

An eight-point linear correlation coefficient ( $r^2$ ) calibration curve was prepared from 10 to 500 ppt with regression value ( $r^2$ )  $\geq$ 0.995. The relative response factor (RRF) was calculated for ECH using the internal standard: 1,4-difluorobenzene. The internal standard was prepared in methanol from a commercially available 1,4-difluorobenzene standard at a concentration of 200 parts per billion (ppb), after which 5  $\mu$ L was then mixed with each 5 mL sample for a resulting concentration of 200 ppt.

Seven 30 ppt standards were prepared to calculate the MDL. Also, seven 100 ppt standards were prepared for the accuracy and precision calculations of the mid-point calibration check. All calibration, MDL, and mid-point calibration check standards were analyzed with the Teledyne LABS Tekmar Lumin P&T and AQUATek LVA conditions in Table I. GC/MS conditions are shown in Table II.

# **Experimental Instrument Conditions**

| able I Tekmar Lumin P&T and AQUATek LVA Water Method Conditions |                 |                       |              |  |  |
|-----------------------------------------------------------------|-----------------|-----------------------|--------------|--|--|
| Standby                                                         | Variable        | Desorb                | Variable     |  |  |
| Valve Oven Temp                                                 | 140 °C          | Desorb Preheat Temp   | 245 °C       |  |  |
| Transfer Line Temp                                              | 140 °C          | Desorb Temp           | 250 °C       |  |  |
| Sample Mount Temp                                               | 90 °C           | Desorb Time           | 1.00 min     |  |  |
| Standby Flow                                                    | 10 mL/min       | Drain Flow            | 300 mL/min   |  |  |
| Purge Ready Temp                                                | 35 °C           | GC Start Signal       | Begin Desorb |  |  |
| MCS Purge Temp                                                  | 20 °C           | Bake                  | Variable     |  |  |
| Purge                                                           | Variable        | Bake Time             | 2.00 min     |  |  |
| Purge Temp                                                      | 20 °C           | Bake Temp             | 260 °C       |  |  |
| Purge Time                                                      | 11.00 min       | MCS Bake Temp         | 200 °C       |  |  |
| Purge Flow                                                      | 40 mL/min       | Bake Flow             | 200 mL/min   |  |  |
| Dry Purge Temp                                                  | 20 °C           | AQUATek LVA           | Variable     |  |  |
| Dry Purge Time                                                  | 0.50 min        | Sample Loop Time      | 0.35 min     |  |  |
| Dry Purge Flow                                                  | 100 mL/min      | Sample Transfer Time  | 0.35 min     |  |  |
| Sample Heater Enable                                            | Off             | Rinse Loop Time       | 0.30 min     |  |  |
|                                                                 |                 | Sweep Needle Time     | 0.30 min     |  |  |
|                                                                 |                 | Presweep Time         | 0.25 min     |  |  |
| Trap                                                            | Vocarb 3000 (K) | Water Temp            | 90 °C        |  |  |
| Chiller Tray                                                    | On, 10 °C       | Bake Rinse Cycles     | 2            |  |  |
| Purge Gas                                                       | Nitrogen        | Bake Rinse Drain Time | 0.35 min     |  |  |

| Table II Agilent 8890 GC and 5977C MS System Conditions |                                                                                                         |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Agilent 8890 GC Conditions                              |                                                                                                         |  |  |  |  |
| Column                                                  | DB-624 UI, 20 m x 0.18 mm, 1 $\mu$ m Film, Column Flow – 0.8 mL/min                                     |  |  |  |  |
| Oven Profile                                            | 40 °C, 1 min, 12 °C/min to 130 °C, 40 °C/min to 220 °C, 1 min, Run Time 11.75 min                       |  |  |  |  |
| Inlet                                                   | 200 °C, 30:1 Split, Septum Purge Flow 0.5 mL/min, 16.53 psi, Carrier Gas - Helium                       |  |  |  |  |
| Agilent 5977C MS Conditions                             |                                                                                                         |  |  |  |  |
| Temp                                                    | Transfer Line 250 °C; Source 230 °C; Quad 150 °C                                                        |  |  |  |  |
| SIM                                                     | 1,4-Difluorobenzene ions – 114; Epichlorohydrin ions – 57,49,62; Solvent Delay 3.50 min, Dwell Time 100 |  |  |  |  |
| Current                                                 | Gain Factor 15, BFB Auto Tune                                                                           |  |  |  |  |

#### **Results**

The linear correlation coefficient of the calibration curve (r²), MDL, and mid-point calibration check standard data are shown in Table III. In addition, a long-term, 40 sample, 30 ppt low-point calibration check standard study was performed with the data shown in Table IV. Figure 1 displays the average response factor calibration curve for ECH. Figure 2 displays a 30 ppt ECH standard in water in SIM mode with confirmation ion 57 m/z and two secondary ions 62 and 49 m/z. Figure 3 displays a 100 ppt ECH standard in water in SIM mode with confirmation ion 57 m/z and two secondary ions 62 and 49 m/z. Figure 4 displays the results of the ECH long-term calibration check standard study.

| Table III Epichlorohydrin Calibration, MDL, and Mid-Point Calibration Check Standard Data |                             |                 |             |                                             |              |                                                  |                    |                     |                    |
|-------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------|---------------------------------------------|--------------|--------------------------------------------------|--------------------|---------------------|--------------------|
| Compound                                                                                  | Calibration<br>(10-500 ppt) |                 |             | Method Detection<br>Limits<br>(n=7, 30 ppt) |              | Mid-Point Calibration<br>Check<br>(n=7, 100 ppt) |                    |                     |                    |
|                                                                                           | Ret.<br>Time                | Confirm.<br>Ion | Cal<br>Type | Linearity<br>(r² ≥0.995)                    | MDL<br>(ppt) | Precision<br>(≤20%)                              | Accuracy<br>(±30%) | Precision<br>(≤20%) | Accuracy<br>(±30%) |
| 1,4-Difluorobenzene (IS)                                                                  | 4.31                        | 114             |             |                                             |              |                                                  |                    |                     |                    |
| Epichlorohydrin                                                                           | 5.43                        | 57              | LIN         | 0.9990                                      | 6.3          | 6.7                                              | 100                | 3.7                 | 111                |

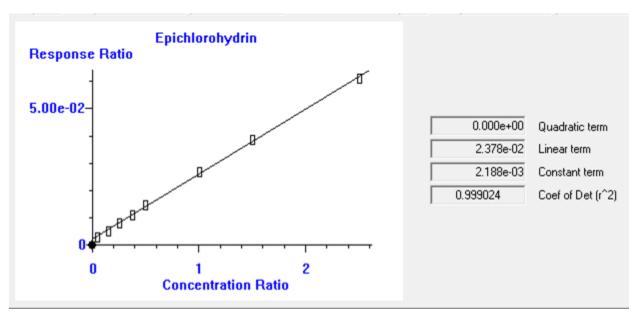



Figure 1 ECH linear correlation coefficient (r²) calibration curve fit, 10-500 ppt.

| Table IV Epichlorohydrin Long-Term  Calibration Check Data |                                                  |                    |  |  |  |
|------------------------------------------------------------|--------------------------------------------------|--------------------|--|--|--|
| Compound                                                   | Long-Term Calibration<br>Check<br>(n=40, 30 ppt) |                    |  |  |  |
|                                                            | Precision<br>(≤20%)                              | Accuracy<br>(±20%) |  |  |  |
| Fluorobenzene (IS)                                         |                                                  |                    |  |  |  |
| Epichlorohydrin                                            | 6.3                                              | 101                |  |  |  |

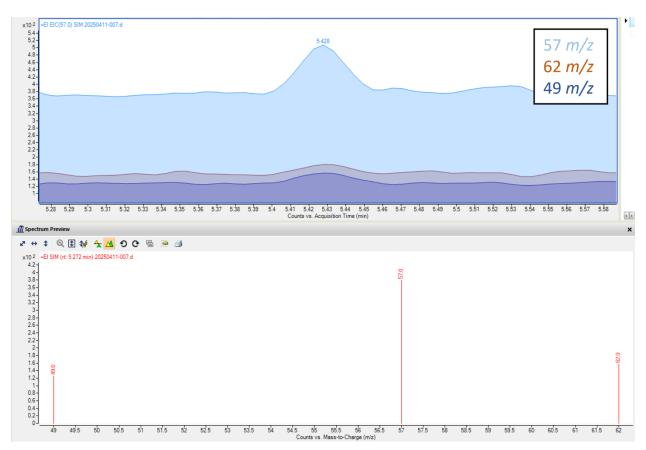



Figure 2 Total ion chromatogram (TIC) of 30 ppt ECH standard in a drinking water sample with confirming ion (57 m/z) and two secondary ions (62 and 49 m/z).

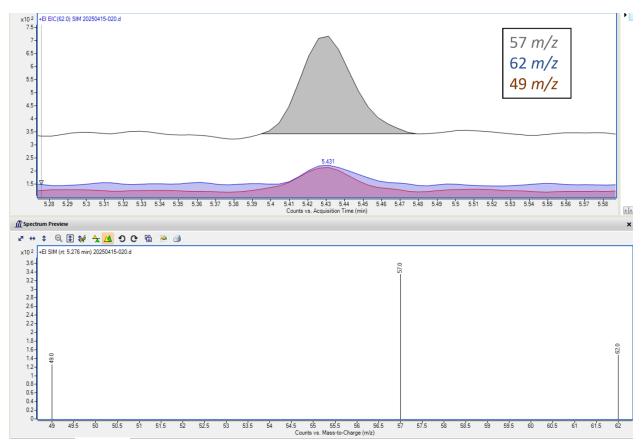



Figure 3 TIC of 100 ppt ECH standard in a drinking water sample with confirming ion (57 m/z) and two secondary ions (62 and 49 m/z).

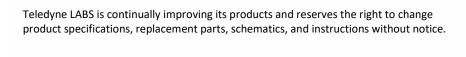


Figure 4 Results of long-term study, n=40, 30 ppt ECH standard in drinking water samples. Red lines represent ±20% accuracy method requirement for continuing calibration check standards.

### **Conclusion**

This study demonstrates the capability of the Teledyne LABS Tekmar Lumin P&T and AQUATek LVA system to process low-level ECH in drinking water samples with detection by an Agilent 8890 GC and 5977C MS. The linearity of the calibration curve from 10 to 500 ppt passed method requirements, including the verification of the initial calibration curve with the 10 ppt passing the lower standard (LLOQ) recalculation within ±50% of its true value and the rest of the calibration curve (>LLOQ) passing with ±30% of their true value. The blank after the highest point in

the calibration curve passed method carryover requirements by remaining <1/2 the LLOQ. Furthermore, the application proved robust during a long-term study with 40 samples of a 30 ppt ECH standard with 6.3% precision and 101% accuracy of the recovery.


### References

- 1. L. Lucentini, E. Ferretti, E. Veschetti, V. Sibio, G. Citti, M. Ottaviani. "Static headspace and purge-and-trap gas chromatography for epichlorohydrin determination in drinking water." Microchemical Journal 80(2005) 89-98
- 2. C. Mattioda, Low-Level Analysis of Epichlorohydrin in Drinking Water by Headspace Trap-GC/MS.
- 3. R.J. Sram, L. Landa, I. Samkova. "Effect of occupational exposure to epichlorohydrin on the frequency of chromosome aberrations in peripheral lymphocytes." Mutat. Res. 122 (1983) 59.
- 4. Council Directive of 83 November 1998, Official Journal of the European Communities 5 December 1998, No. 330/32.



Rev 1.0 May, 2025

teledynelabs.com



